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Site characterization using joint reconstruction of
disparate data types
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Site characterization, CO2 storage, and risk assessments
are underlain by geological uncertainty

In Salah Project, Kretchba field

• What is the geological
uncertainty?
  Are there fast-paths in the
reservoir?
Does a fault transmit fluids or

segment a reservoir into
compartments?

• How can one integrate data
streams to understand
reservoir performance?

• Can one reduce uncertainty?
  How can 4D seismic, injection

volumes, and production data
constrain uncertainty

From Rittiford et al., 2004
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Method for the subsurface imaging of reservoirs
and CO2 plumes

• Monte Carlo Markov chain (MCMC):
– uses disparate data types: integration of data
– Core logs, geophysical logs, injected CO2 volume
– Formation geostatistical trends: correlation length, thickness &

juxtapositional tendencies
– Production data, tracer results, surface & cross-borehole geophysics

• Provides rigorous measure of uncertainty in the subsurface
– Minimization of CO2 storage risks requires knowledge of subsurface

uncertainty
– Unknown reservoir properties, measurement error, lack of

sensitivity/resolution of geophysics

• The output is distribution of likely reservoir models
– Alternative models ranked based on how well they fit the data
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MCMC is a stochastic inversion & data
integration approach

 Other
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The benefits are:
• Rigorously combine geologic & geophysical insight with

measurements,
• Measures uncertainty in complex problems,
• Robust – noisy data, solution space with multiple local minima
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Goal is to find reservoir models that are
consistent with all available data

• Most methods look for the “best”
answer

-model at the top of the tallest
hill
- Geophysical inversion is
typically non-unique

• MCMC :
- Identifies alternative models
- Alternatives are objectively
ranked (hill height)
- Measures variability (hill width)

• Joint reconstruction of multiple data
increases the height of a few hills

- Uses cascade reconstruction
approach (Mosegard & Tarantola,
1995)
-Reduce uncertainty

Reservoir Models 

A-priori data

Geophysical data

Tracer data
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Importance Sampling to the Rescue:
Rapid Searching of the Good Matches

With importance
sampling, the
engine repeatedly
finds the true
configuration
(iterations with
blue).

MCMC Sampling of Possible Configurations
The accepted
configurations are
summed (stacked) to
give the posterior
probability including
error in data and
models.
The most probable
configuration is
repeatedly identified.

When only
random Monte
Carlo sampling
is used, the true
configuration is
not found in
700,000
iterations. (20
trillion possible)

Random Sampling of Possible Configurations

The stacked sum of
random
configurations is
equal to the prior
probability, or the
information built into
the original lithology
model.

10
Probability
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Importance Sampling to the Rescue:
Rapid Searching of the Good Matches

With importance
sampling, the
engine repeatedly
finds the true
configuration.

Stochastic Engine Sampling of Possible Configurations
The accepted
configurations are
summed (stacked) to
give the posterior
probability including
error in data and
models.
The most probable
configuration is
repeatedly identified.

When only
random Monte
Carlo sampling
is used, the true
configuration is
not found in
700,000
iterations. (20
trillion possible)

Random Sampling of Possible Configurations

The stacked sum of
random
configurations is
equal to the prior
probability, or the
information built into
the original lithology
model.

10
Probability
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MCMC finds models that are most consistent
with the available data

• Prior data: existing core or well-
logs, 3-D seismic, formation
geostatistical trends, etc.

• Other data could be geophysical
measurements, production data,
tracer results, etc.

•Tends to hover in regions where
models best fit data

- used to rank alternatives
- much more efficient than
conventional Monte Carlo

• Samples the whole space of
possible models

- needed to quantify uncertainty
- different from simulated annealing -
multiple answers
- computationally intensive

Reservoir Models 

Prior data

Geophysical
data

Tracer data
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MCMC applied to reservoir characterization
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Lost Lake

Application: SRS wants to identify contaminant
pathways in the A/M area

10
UNCLASSIFIED//FOUO
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We tested MCMC with data from the Savannah
River Site A/M Outfall Area
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• Knowns:
-Lithology at distal well
- Overall site lithologic trends
- ERT Data in two wells (poor
quality)

• Unknowns:
- Reservoir model away from distal
well

Shown is one possible
lithology realization

• Geostatistical Model (Carle et al.)
used to generate models

- Uses borehole data & geospatial
trends
- Correlation lengths, thickness and
juxtaposition
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The search found the most likely reservoir models

Lithology cross-section
(synthetic)

Probability of Each Lithology Type

01 01 01

Fixed Lithology
(Well)ERT Data Zone

Result: quantitative assessments of uncertainty : useful for risk
assessment and site characterization.
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Infiltration at the SRS outfall site: the most likely differs
dramatically from conventional expectation

• Conventional Monte Carlo
simulation using the prior
geologic data alone predicts fairly
uniform infiltration.

• Adding the constraints from imaging data results in a
very different infiltration pattern; there is a very high
probability of a continuous clay layer at 5-10 m.

We use geophysical logs and core data to “soft condition”
the prior lithology models

clayey sand, high confidence

clay,high confidence.

sand, medium confidence
clayey sand low confidence

expected resistivity range for clay

expected resistivity range for clayey sand

expected resistivity range for sand

sand, low confidence
clayey sand, low confidence

clayey sand, high confidence
clay, low confidence

clayey sand, low confidence

Mesh for generator of
lithology models

borehole
logged

Mesh elements can
be assigned more
than one lithology

The confidence in a
given lithology assign-
ment determines to
what degree the
assignment is honored

Electric log, MES 4,
A-14 Outfall

Stepwise reanalysis  starts with the previous result, which
incorporates all previous data and  uncertainty.
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Lithology and geophysical logs are used to
constrain the lithology models

• Bayesian time-series
analysis is applied to
establish confidence
levels for given
lithology types.

• This type of “soft”
conditioning allows
many kinds of data to
be incorporated
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MCMC applied to CO2 plume monitoring
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Electrical resistance measurements detect
changes in  pore fluid resistivity

 Measures resistance between
electrodes

Short electrodes on casing surface of
production/injection wells

+ -

Electrodes

Boreholes

VoltmeterCurrent source ( S ) = 0ϕ

conductivity
potential

Solve Poisson's equation
numerically:

Borehole casings = long electrodes
Fast, cheap, low signal to noise
Horizontal resolution only
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We have monitored CO2 injection at the  Salt
Creek Field, Wyoming

• Used abandoned well casings
as long electrodes
– ~ 710 m deep

• Time-lapse results using
deterministic approach were
discouraging

• Poor signal to noise
– ~4% of casing length in contact

with reservoir

Thanks to RMOTC and Anadarko Petroleum for their support
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Time-lapse stochastic inversions offered some
hope

stochastic
• Most frequent result is

donut-shaped
– Modeling suggests that

this is consistent with
poor signal to noise data

• Less frequent results
show a plume starting at
the injection

• Decided to use injected
CO2 volume as an
additional constraint
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Time-lapse sequence shows a growing CO2
plume

stochastic

no
rt

h

injector

producer • Injected volume data
helps pull out the small
changes caused by the
CO2

• Confidence in the
result improves when
CO2 inj. volume data is
used

• Fast path established
between injector and
producer
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MCMC can be used for site characterization
and plume monitoring

• Joint reconstruction of disparate data types

• Can handle noisy data, inversions with many local minima

• Computationally intensive
– Almost all the time is spent on the forward problem
– Requires parallel clusters with 10’s to 100’s of nodes for these

applications

• Models can be used for risk evaluation, identify range of reservoir
performance, identify CO2 flowpaths

• Provides rigorous measure of uncertainty in the subsurface
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The Monte-Carlo Markov-Chain approach finds
models consistent with all available data

Reservoir Models 
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Many geophysical inversions are ill-posed,
non-linear , non-unique

• Geophysical inversion is typically unstable, requires
constraints

• Classical (deterministic) approach requires Tikhonov-type
regularization for stability (e.g., minimum roughness)

• Statistical inversions are stabilized by a priori information
• When enough information (constraints) added, problem is well-

behaved (no longer ill-posed)
• Prior information serves the same purpose as the regularization

functional
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